本博客记录了不少我在读文章时所作的笔记,但质量普遍不高,本文是我对科技类论文阅读和记笔记习惯的反思,也是对自己日后笔记的要求。
本博客记录了不少我在读文章时所作的笔记,但质量普遍不高,本文是我对科技类论文阅读和记笔记习惯的反思,也是对自己日后笔记的要求。
DenseNet将shortcut-connection的思路发挥到极致。在一个DenseBlock内部,每一层的输出均跟后面的层建立shortcut,特别需要注意的是,不同于ResNet中的相加,DenseNet连接shortcut的方式是Concat,这样越深的层则输入channel数越大。
本文提出了深度网络的新维度,除了深度、宽度(Channel数)外,作者将在某一层并行transform的路径数提取为第三维度,称为”cardinality”。跟Inception单元不同的是,这些并行路径均共享同一拓扑结构,而非精心设计的卷积核并联。除了并行相同的路径外,也添加了层与层间的shortcut connection。但由于其多路径的设计特征,我将其归为Inception系网络。
MobileNets系列可以看做是继Xception之后对Depthwise Separable Convolution的又一推动。利用深度可分离的特征,MobileNets系列引入两个模型精度和大小的超参,在保持相当精度的同时享有非常小的计算消耗,适用于移动端情形,因而被命名为”MobileNets”。
本篇是keras库作者的文章,对Inception结构进行了改进:用Depth-wise seperable convolution替换了Inception单元中的1×1卷积和3×3卷积。
文章对Inception结构的评论非常有见地。
在15年,ResNet成为那年最耀眼的卷积网络结构,skip-connection的结构也成为避不开的考虑选项。Inception系列也参考ResNet更新了自己的结构。同时推出了第四代和跟ResNet的结合版:Inception-v4和Inception-ResNet。
这篇文章偏综述和实验报告的性质,前几个部分对检测模型有不错的概括,重头在实验结果部分,实验细节也描述的比较清楚,可以用来参考。
文章指出两阶段检测器通常在生成Proposal后进行分类的“头”(head)部分进行密集的计算,如ResNet为基础网络的Faster-RCNN将整个stage5(或两个FC)放在RCNN部分, RFCN要生成一个具有随类别数线性增长的channel数的Score map,这些密集计算正是两阶段方法在精度上领先而在推断速度上难以满足实时要求的原因。
YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。
本文是作者推进inception结构的第2.5步。在更早的文章里,同一作者提出Batch Normalization并且用来改进了Inception结构,称为Inception-BN。而在这篇文章里,作者提出了Inception-v2和Inception-v3,两者共享同一网络结构,v3版本相比v2版本加入了RMSProp,Label Smoothing等技巧。
文章指出了检测任务之前的框架存在不自然的设计,即全卷积的特征提取部分+全连接的分类器,而表现最好的图像分类器都是全卷积的结构(ResNet等),这一点是由分类任务的平移不变性和检测任务的平移敏感性之间的矛盾导致的。换句话说,检测模型采用了分类模型的特征提取器,丢失了位置信息。这篇文章提出采用“位置敏感分数图”的方法解决这一问题。
本作是Inception系列网络的第一篇,提出了Inception单元结构,基于这一结构的GoogLeNet拿下了ILSVRC14分类任务的头名。文章也探讨了网络在不断加深的情况下如何更好地利用计算资源,这一理念也是Inception系列网络的核心。
本篇论文介绍了旷视取得2017 MS COCO Detection chanllenge第一名的模型。提出大批量训练检测网络,并用多卡BN保证网络的收敛性。
Faster R-CNN是2-stage方法的主流方法,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA。
R-CNN系列的开山之作,2-stage的想法至今仍是精确度优先方法的主流。而且,本文中的众多做法也成为检测任务pipeline的标准配置。
本文探索了参数标准化(Weight Normalization)这一技术在GAN中的应用。BN在mini-batch的层级上计算均值和方差,容易引入噪声,并不适用于GAN这种生成模型,而WN对参数进行重写,引入噪声更少。
深层网络在图片分类问题上表现优异,但网络结构的设计上并没有统一的指导。进化是构建深度网络架构的一种方式。利用本文的自动化方法得出的深度网络结构,已经能在CIFAR-10上取得可以跟人工设计的网络相媲美的结果。
基于动态图的深度学习框架如Pytorch
,DyNet
提供了更为灵活的结构和数据维度的选择,但要求开发者自行将数据批量化,才能最大限度地发挥框架的并行计算优势。
这篇文章是三位大牛15年发表在Nature上有关深度学习的综述,尽管这两年深度学习又有更多的模型和成果出现,文章显得有些过时,但来自三位领军人物对深度学习的深度阐述还是值得反复回味。
网络在堆叠到越来越深之后,由于BP算法所依赖的链式法则的连乘形式,会出现梯度消失和梯度下降的问题。初始标准化和中间标准化参数在一定程度上缓解了这一问题,但仍然存在更深的网络比浅层网络具有更大的训练误差的问题。
Update your browser to view this website correctly. Update my browser now