#R-CNN

如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题。深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向。

阅读更多

Faster R-CNN是2-stage方法的主流方法,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA。

阅读更多

Fast R-CNN 是对R-CNN的改进,作者栏只有RBG一人。文章先指出了R-CNN存在的问题,再介绍了自己的改进思路。文章结构堪称典范,从现存问题,到解决方案、实验细节,再到结果分析、拓展讨论,条分缕析,值得借鉴。而且,RBG开源的代码也影响了后来大部分这一领域的工作。

阅读更多

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×